Bremen

I EEEEEEENDN
S e " """

Advanced Computer Graphics
Advanced Texturing Methods

G. Zachmann

University of Bremen, Germany
cgvr.informatik.uni-bremen.de

..

W Problems with (Simple) Parameterizations §

= Distortions in size & form

= Consequence: relative over- or under-sampling

= Examples:

O L)
()
0006

Embedding Distortion

G. Zachmann Advanced Computer Graphics SS July 2014 Advanced Texturing 5

eeeeee

&Y One Technique: Seams ("Nahte", Texturspriinge)

" Goal: minimize the distortion

|dea: cutting up the mesh along
certain edges
Seam

= Results in "double edges", also
called seams
Unavoidable with non-planar
topology 4 1

Seam

G. Zachmann Advanced Computer Graphics SS July 2014 Advanced Texturing

..

za
]

eeeee

= Cut the object along only one continuous
edge (preferably at inconspicuous places)

= Effect: the resulting mesh is now
topologically equivalent to a disc

= Then embed this cut-open mesh into the
2D plane

G. Zachmann Advanced Computer Graphics SS July 2014

Advanced Texturing

&
“#
v

e e

Bremen

o
Y Bl

" Problem: there are still distortions

= Straight-forward remedy: multiple incisions

= Problem: produces a severely fragmented embedded grid with many seams

G. Zachmann Advanced Computer Graphics SS July 2014 Advanced Texturing 8

= Another problem with seams: vertices on the seam must have multiple
(u,v) coordinates

= Remedy: create multiple copies of those vertices

= New problem in case of deformations of the mesh

G. Zachmann Advanced Computer Graphics SS July 2014 Advanced Texturing

v
‘ﬁw
N,
e =

VR =

Seams

uoII0IsIq

V=444 Texture Atlas:
= Small quantity of patches
= Short and hidden seams

G. Zachmann Advanced Computer Graphics SS July 2014 Advanced Texturing

cG
VR

10

Bremen

Y

Texture Atlas

" |dea:
= Cut the 3D surface in individual patches

= Map = individual parameter domain in texture
space for a single patch

= Texture Atlas = set of these patches with their
respective maps (= parameter domains)

= Statement of the problem:

= Choose a compromise between seams and
distortion

= Hide the cuts in less visible areas

- How do you do that automatically?

= Determine a compact arrangement of texture
patches (a so-called packing problem)

G. Zachmann Advanced Computer Graphics SS July 2014

Advanced Texturing

11

Bremen

= Example:

G. Zachmann Advanced Computer Graphics SS July 2014 Advanced Texturing 12

13

Advanced Texturing

July 2014

SS

Advanced Computer Graphics

G. Zachmann

eeeeee

U Digression: A Geometric Brain-Teaser

= A cube can be unfolded into a
Cross:

" Into what other forms can a cube
be unfolded, too?

G. Zachmann Advanced Computer Graphics SS July 2014

Katie Park / unfoldit.org

Katie Park / unfoldit.org

Advanced Texturing

14

eeeee

= Side note: the (unfolded) cube can be folded into a parallelogram

= BTW: all platonic solids except for the dodecahedron can be folded into
a parallelogram in this way ...

G. Zachmann Advanced Computer Graphics SS July 2014 Advanced Texturing

15

sremen o
\8) Cube Maps [Greene '86, Voorhies '94] f%

. . ('11'1/1
= Parameter domain 2 = unit cube: A

= Six quadratic texture bitmaps (1,-1,-1) A1, -1)
[} / ’ ’

= 3D texture coordinates in OpenGL:

glTexCoord3f(s, t, r);
glVertex3f(x, y, z);

= Largest component of (s,t,r) determines the
map, intersection point determines (u,v)
within the map

= Rasterization of cube maps:

1. Interpolation of (s,t,r) in 3D
2. Projection onto the cube — (u,v)

3. Texture look-up in 2D

= Pro: relatively uniform, OpenGL support

= Slight con: one needs 6 images

G. Zachmann Advanced Computer Graphics SS July 2014 Advanced Texturing 16

Examples

G. Zachmann

Advanced Computer Graphics

SS

July 2014

¥ cc
o
front
bottom
Advanced Texturing 17

eeeee

J i
W Cube Maps in OpenGL ‘}g

glGenTextures(1, &texturelID);
glBindTexture (GL_TEXTURE CUBE MAP, texturelD);
glTexImage2D (GL_TEXTURE CUBE MAP POSITIVE X, 0, GL RGBA8, width, height,
0, GL RGB, GL UNSIGNED BYTE, pixels faceO);
Load the texture of the other cube faces

glTexParameteri(GL TEXTURE CUBE MAP, 44———-"”"-—~ﬂ— Analog:
GL TEXTURE MAG FILTER,
GL TEXTURE WRAP S, GL CLAMP TO EDGE) ; - - -
- - - = — =) GL_TEXTURE WRAP T, etc.

Set more texture parameters, like filtering

glEnable (GL_TEXTURE CUBE MAP) ;

glBindTexture (GL_TEXTURE CUBE MAP, texturelD);

glBegin(GL_...);

Just like with all other vertex attributes in OpenGL:

lTexCoord3f(s, t, r); : .)
=) ()i < first send all attributes, then the coordinates

glVertex3f(...);

G. Zachmann Advanced Computer Graphics SS July 2014 Advanced Texturing 18

eeeee

G. Zachmann Advanced Computer Graphics SS July 2014 Advanced Texturing 19

eeeeee

G. Zachmann Advanced Computer Graphics SS July 2014 Advanced Texturing 20

= Must prevent seams manually = No seams automatically
= E.g., by making colors match = There are no gaps in the parameter
across seams domain
= MIP-mapping is difficult = MIP-mapping is okay

G. Zachmann Advanced Computer Graphics SS July 2014 Advanced Texturing 21

eeeee

G. Zachmann Advanced Computer Graphics SS

Must prevent seams manually

Triangles may lie within the
patches

MIP-mapping is difficult
Only valid for a specific mesh

Texels are wasted

July 2014

No seams automatically

Triangles can lie in multiple
patches

MIP-mapping is okay
Valid for many meshes

All texels are used

Advanced Texturing

22

eeeeee

G. Zachmann

Advanced Computer Graphics

SS

July 2014

Advanced Texturing

24

cG

U Polycube Maps

.

= Use many cube maps instead of an individual cube — polycube map

= Adapted to geometry and topology

W

G. Zachmann Advanced Computer Graphics SS July 2014 Advanced Texturing 25

Examples

e,
e oy
LA

(77 77

L “\!“.‘u (r
ety

wety

G. Zachmann Advanced Computer Graphics SS July 2014 Advanced Texturing 26

eeeeee

Environment Mapping

= With very reflective objects, one would like
to see the surrounding environment
reflected in the object

= Ray-tracing can do this, but not the
polygonal rendering by rasterization

* The idea of environment mapping:
= "Photograph" the environment in a texture
= Save this in a so-called environment map

= Use the reflection vector (from the ray) as an
index in the texture

= A.k.a. reflection mapping

G. Zachmann Advanced Computer Graphics SS July 2014

Advanced Texturing

27

= For every spatial direction, the
environment map saves the color of
the light that reaches a specific point

= Only correct for one position

= No longer correct if the environment
changes

G. Zachmann Advanced Computer Graphics SS July 2014

irorn

E- 14

-
.
]

<N

ap

Advanced Texturing 28

e

i : : . SO
W Historical Examples of Applications ot

Lance Williams, Siggraph 1985 Flight of the Navigator in 1986;
first feature film to use the technique

G. Zachmann Advanced Computer Graphics SS July 2014 Advanced Texturing 29

eeeee

G. Zachmann

-

‘ illll‘r"_

.

Terminator 2: Judgment Day - 1991
most visible appearance — Industrial Light + Magic

Advanced Computer Graphics SS July 2014

Advanced Texturing

30

eeeeee

G. Zachmann Advanced Computer Graphics SS July 2014

g i
Environment Mapping Steps oo

VR =

= Generate or load a 2D texture that depicts the environment
= During rasterization, for every pixel of the reflected object...
1. Calculate the normal n
2. Calculate a reflection vector r from n and the view vector v
3. Calculate texture coordinates (u,v) from r

4. Color the pixel with the texture value

= The problem: how does one parameterize the space of the reflection
vectors?

= |.e.: how does one map spatial directions (= 3D vectors) onto [0,1]x[0,1]?
= Desired characteristics:

= Uniform sampling (number of texels per solid angle should be "as constant as
possible" in all directions)

= View-independent — only one texture for all camera positions

= Hardware support (texture coordinates should be easy to generate)

Advanced Texturing 31

eeeeee

Spherical Environment Mapping

= Generating the environment map (= texture):

= Photography of a reflective sphere; or

= Ray-tracing of the scene with all primary rays
being reflected at a perfectly reflective sphere

N

I
]

174
< \
- /N
< f\
/

=

2 A

G. Zachmann Advanced Computer Graphics SS July 2014

Advanced Texturing

32

]

eeeeee

= Mapping of the directional vector r
onto (u,v):
= The sphere map contains

(theoretically) a color value for every
direction, except r=(0, 0, -1)

= Mapping:
I
(“> 1 [Vet +(t1)? 1
v) 5 Iy
VR (r+1)? 1

E- 14

-
.
]

<N

A
y
______________ r J 2
B
4
A
y
Z
Advanced Texturing 33

G. Zachmann Advanced Computer Graphics SS July 2014

View Vector

G. Zachmann

~

Reflected Viéw Vector

Advanced Computer Graphics

SS

July 2014

-~

(can be calculated automatically by OpenGL)

Texture Plane

Advanced Texturing

34

Y

Simple Example

G. Zachmann Advanced Computer Graphics

SS

July 2014

Advanced Texturing

35

a=00pi —— A
a= 0.1 pi l
a=0.2pi — 2

a= 0.3 pi A
a= 0.4 pi 1 (— Front Half
a=05pi ——— 2\5‘,\

a= 0.6 pi N ———Back Half
a= 0.7 pi
a=08pi ——
a=09pi ——
a= 1.0 pi

>

G. Zachmann Advanced Computer Graphics SS July 2014 Advanced Texturing 36

eeeee

= Texture coords are interpolated
incorrectly:

= Texture coords are interpolated linearly (by
the rasterizer), but the sphere map is non-
linear

= Long polygons can cause serious "bends" in
the texture

= Sometimes, incorrect wrap-arounds occur
with interpolated texture coords

= Sparkles / speckles if the reflecting vector
comes close to the edge of the texture
(through aliasing and "wrap-around")

2D texturing
Intended/ haro!ware
correct doesn't know
wrap about sphere
through maps, it just
the sphere . linearly
perimenter interpolates
texture coords
G. Zachmann Advanced Computer Graphics SS July 2014

Cyan sparkle sneaks into

' silhouette edge.

Also lots: of black sparkles.
Flickers in animations.

Advanced Texturing 37

eeeeee

= Other cons:

= Textures are difficult to generate by program (other than ray-tracing)

= Viewpoint dependent: the center of the spherical texture map represents the
vector that goes directly back to the viewer!

- Can be made view independent with some OpenGL extensions
" Pros:

= Easy to generate texture coordinates
= Supported in OpenGL

G. Zachmann Advanced Computer Graphics SS July 2014 Advanced Texturing

&
“\0
N

7 ce

VR =

38

Y

eeeee

A Piece of Artwork

G. Zachmann

Reflective balls in the main street of Adelaide, Australia

Advanced Computer Graphics SS July 2014

Advanced Texturing

39

Bremen

3
W Dual Parabolic Environment Mapping B

= |dea: "

= Map the environment onto two textures
via a reflective double paraboloid

= Pros:

- Relatively uniform sampling

- View independent

- Relatively simple computation of texture

coordinates
- Also works in OpenGL

- Also works in a single rendering pass (just
needs multi-texturing)

= Cons:

- Produces artifacts when interpolating
across the edge

G. Zachmann Advanced Computer Graphics SS July 2014 Advanced Texturing 40

eeeee

= Images of the environment (= directional vectors) are still discs (as with
the sphere map)

= Comparison:

Back

Front

Result

Parabolic environment map

G. Zachmann Advanced Computer Graphics SS July 2014 Advanced Texturing 41

Bremen

Y

Cubic Environment Mapping 5.

= As before with the "normal" cube
maps
= Only difference: use the reflected

vector r for the calculation of the
texture coordinates

= This reflected vector can be
automatically calculated by

OpenGL for each vertex
(GL_REFLECTION MAP)

G. Zachmann Advanced Computer Graphics SS July 2014 Advanced Texturing 42

G. Zachmann

Advanced Computer Graphics

Cube Map Demo

SS July 2014

Advanced Texturing

.ce =
VR o

43

eeeeee

Cube Maps as LUT for Directional Functions > ..

= Further application: one can also use a cube map to store any function of
direction! (as a precomputed lookup table)

= Example: normalization of a vector

= Every cube map texel (s,t,r) stores this vector
(S, t, r) -
I(s. ¢,)]

= Now one can specify any texture coordinates using

in its RGB channels

glTexCoord3f () and receives the normalized vector

= Warning: when using this technique,
one should turn off filtering

G. Zachmann Advanced Computer Graphics SS July 2014 Advanced Texturing 44

eeeeee

Dynamic Environment Maps

= Until now: environment map was invalid as soon as something in the
environmental scene had changed!

" |dea:
= Render the scene from the "midpoint" outward (typically 6x for cube map)
= Transfer framebuffer to texture (using the appropriate mapping)

= Render the scene again from the viewpoint outward, this time with
environment mapping

» Multi-pass rendering

= Typically used with cube env maps

G. Zachmann Advanced Computer Graphics SS July 2014 Advanced Texturing

45

Bremen

wj Dynamic Environment Mapping in OpenGL

Using Cube Maps

float
1.

-1.

0.

o O o

I 2

{ 0.

o OO O o
O OO O o

I 2

)¢

14

0,

4

~

~

14

=l

0
0
.0
0
0

GLuint cm_size
GLfloat cm dir[6][3];

0,

4

~

~

~

’

-1

R OO o

dir[6][3] = {
0, 0.0, 0.0,
0, 0.0, 0.0,
0, 0.0, -1.0,
.0, 0.0, 1.0,
0, 1.0, 0.0,
0, -1.0, 0.0

GLfloat cm up[6] [3]
0.

0
0
.0
0
0
.0

512;

14

~

~

~

14

GLfloat cm_center[3];

GLenum cm_face[6]
GL_TEXTURE_CUBE_MAP POSITIVE X,
GL_TEXTURE_CUBE_MAP NEGATIVE X,
GL_TEXTURE CUBE MAP NEGATIVE Z,
GL_TEXTURE_CUBE MAP POSITIVE Z,
GL_TEXTURE CUBE MAP POSITIVE Y,
GL_TEXTURE_CUBE_MAP NEGATIVE Y

//
//

//
//
//
//
//
//

//
//
//
//
//
//
//

//

texture resolution of each face
direction vectors

right
left
bottom
top
back
front

up vectors
+x
-x
ty
R4
+z
-z

viewpoint / center of gravity

// define cube map's center cm_center[] = center of object
// (in which scene has to be reflected)

= JoTy =TT T

46

eeeee

// set up cube map's view directions in correct order
for (uint i =0, 1< 6; i +)
for (uint j =0, j < 3; j +)
cm dir[i] [J] = cm center[]j] + dir[i][]];

// render the 6 perspective views (first 6 render passes)
for (unsigned int i = 0; i < 6; i ++)
{
glClear(GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT) ;
glViewport(0, 0, cm size, cm _size);
glMatrixMode (GL_PROJECTION) ;

glLoadIdentity () ;

gluPerspective(90.0, 1.0, 0.1, ...),
glMatrixMode (GL MODELVIEW) ;
glLoadIdentity() ;

gluLookAt(cm center[0], cm center[l], cm center[2],
cm dir[i] [0], em dir[i][1], em dir[i] [2],
cm up[i] [0], cm up[i][1l], cm up[i][2])’
// render scene to be reflected

// read-back into corresponding texture map
glCopyTexImage2D(cm_face[i], 0, GL RGB, 0, 0, cm size, cm size, 0);

G. Zachmann Advanced Computer Graphics SS July 2014 Advanced Texturing

cG
VR

47

eeeee

// cube map texture parameters init

glTexEnvf(GL TEXTURE ENV, GL TEXTURE ENV MODE, GL MODULATE) ;
glTexParameteri (GL_TEXTURE CUBE MAP, GL_TEXTURE WRAP S, GL CLAMP);
glTexParameteri (GL TEXTURE CUBE MAP, GL TEXTURE WRAP T, GL CLAMP) ;
glTexParameterf (GL TEXTURE CUBE MAP, GL TEXTURE MAG FILTER, GL LINEAR) ;
glTexParameterf (GL_TEXTURE CUBE MAP, GL TEXTURE MIN FILTER, GL NEAREST) ;

glTexGeni(GL_S, GL_TEXTURE GEN MODE, GL REFLECTION MAP) ; — T d
glTexGeni (GL T, GL TEXTURE GEN MODE, GL REFLECTION MAP); pepoecen
glTexGeni (GL_R, GL TEXTURE GEN MODE, GL REFLECTION MAP); in Eye-Koord.

// enable texture mapping and automatic texture coordinate generation
glEnable (GL _TEXTURE GEN S);

glEnable(GL _TEXTURE GEN T);

glEnable (GL _TEXTURE GEN R);

glEnable (GL _TEXTURE CUBE MAP) ;

// render object in 7th pass (in which scene has to be reflected)

// disable texture mapping and automatic texture coordinate generation
glDisable(GL_TEXTURE CUBE_MAP) ;

glDisable(GL_TEXTURE GEN S) ;

glDisable(GL_TEXTURE GEN T);

glDisable(GL_TEXTURE GEN R);

G. Zachmann Advanced Computer Graphics SS July 2014 Advanced Texturing

eeeeee

T

For Further Reading

= On the class’s homepage:
= "OpenGL Cube Map Texturing" (Nvidia, 1999)

- With example code

- Here several details are explained (e.g. the orientation)

= "Lighting and Shading Techniques for Interactive Applications" (Tom
McReynolds & David Blythe, Siggraph 1999);

= SIGGRAPH '99 Course: "Advanced Graphics Programming Techniques Using
OpenGL" (ist Teil des 0.g. Dokumentes)

G. Zachmann Advanced Computer Graphics SS July 2014 Advanced Texturing 49

