
Advanced Computer Graphics
Advanced Texturing Methods

G. Zachmann
University of Bremen, Germany
cgvr.informatik.uni-bremen.de

G. Zachmann 5 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

Problems with (Simple) Parameterizations

§  Distortions in size & form

§  Consequence: relative over- or under-sampling

§  Examples:

Mesh Embedding Distortion

G. Zachmann 6 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

One Technique: Seams ("Nähte", Textursprünge)

§  Goal: minimize the distortion

§  Idea: cutting up the mesh along
certain edges

§  Results in "double edges", also
called seams

§  Unavoidable with non-planar
topology 1

2 3
4

Seam

Seam

G. Zachmann 7 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

§  Cut the object along only one continuous
edge (preferably at inconspicuous places)

§  Effect: the resulting mesh is now
topologically equivalent to a disc

§  Then embed this cut-open mesh into the
2D plane

G. Zachmann 8 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

§  Problem: there are still distortions

§  Straight-forward remedy: multiple incisions

§  Problem: produces a severely fragmented embedded grid with many seams

G. Zachmann 9 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

§  Another problem with seams: vertices on the seam must have multiple
(u,v) coordinates

§  Remedy: create multiple copies of those vertices

§  New problem in case of deformations of the mesh

G. Zachmann 10 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

Distortion or Seams?

Cut up into a single patch Cut into triangles

Se
am

s
D

istortion

Texture Atlas:
§  Small quantity of patches
§  Short and hidden seams

G. Zachmann 11 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

Texture Atlas

§  Idea:

§  Cut the 3D surface in individual patches

§ Map = individual parameter domain in texture
space for a single patch

§  Texture Atlas = set of these patches with their
respective maps (= parameter domains)

§  Statement of the problem:

§  Choose a compromise between seams and
distortion

§  Hide the cuts in less visible areas

-  How do you do that automatically?

§  Determine a compact arrangement of texture
patches (a so-called packing problem)

G. Zachmann 12 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

§  Example:

G. Zachmann 13 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

G. Zachmann 14 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

Digression: A Geometric Brain-Teaser

§  A cube can be unfolded into a
cross:

§  Into what other forms can a cube
be unfolded, too?

Ka
tie

 P
ar

k
/

un
fo

ld
it.

or
g

Ka
tie

 P
ar

k
/

un
fo

ld
it.

or
g

G. Zachmann 15 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

§  Side note: the (unfolded) cube can be folded into a parallelogram

§  BTW: all platonic solids except for the dodecahedron can be folded into
a parallelogram in this way …

G. Zachmann 16 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

Cube Maps [Greene '86, Voorhies '94]

§  Parameter domain Ω = unit cube:
§  Six quadratic texture bitmaps

§  3D texture coordinates in OpenGL:

§  Largest component of (s,t,r) determines the
map, intersection point determines (u,v)
within the map

§  Rasterization of cube maps:
1.  Interpolation of (s,t,r) in 3D

2.  Projection onto the cube ⟶ (u,v)

3.  Texture look-up in 2D

§  Pro: relatively uniform, OpenGL support

§  Slight con: one needs 6 images

glTexCoord3f(s, t, r);
glVertex3f(x, y, z);

(-1,-1,-1)

(-1, -1,1)

(1, -1, -1)

(1,-1, -1)

(1,1,1)

G. Zachmann 17 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

Examples

G. Zachmann 18 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

Cube Maps in OpenGL

glGenTextures(1, &textureID);

glBindTexture(GL_TEXTURE_CUBE_MAP, textureID);

glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X, 0, GL_RGBA8, width, height,

 0, GL_RGB, GL_UNSIGNED_BYTE, pixels_face0);

... Load the texture of the other cube faces

glTexParameteri(GL_TEXTURE_CUBE_MAP,

 GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);

... Set more texture parameters, like filtering

glEnable(GL_TEXTURE_CUBE_MAP);

glBindTexture(GL_TEXTURE_CUBE_MAP, textureID);

glBegin(GL_...);

glTexCoord3f(s, t, r);

glVertex3f(...);

...

Just like with all other vertex attributes in OpenGL:
first send all attributes, then the coordinates

Analog:
GL_TEXTURE_MAG_FILTER,
GL_TEXTURE_WRAP_T, etc. …

G. Zachmann 19 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

§  Example cube map for a sky box:

G. Zachmann 20 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

Texture Atlas vs. Cube Map

Textur
von

Patch A

Textur
von

Patch B

G. Zachmann 21 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

Texture Atlas vs. Cube Map

§  Must prevent seams manually

§  E.g., by making colors match
across seams

§  MIP-mapping is difficult

§  No seams automatically

§  There are no gaps in the parameter
domain

§  MIP-mapping is okay

Textur
von

Patch A

Textur
von

Patch B

G. Zachmann 22 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

§  Must prevent seams manually

§  Triangles may lie within the
patches

§  MIP-mapping is difficult

§  Only valid for a specific mesh

§  Texels are wasted

§  No seams automatically

§  Triangles can lie in multiple
patches

§  MIP-mapping is okay

§  Valid for many meshes

§  All texels are used

G. Zachmann 24 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

§  Must prevent seams manually

§  Triangles may lie within the
patches

§  MIP-mapping is difficult

§  Only valid for a specific mesh

§  Texels are wasted

§  No seams automatically

§  Triangles can lie in multiple
patches

§  MIP-mapping is okay

§  Valid for many meshes

§  All texels are used

G. Zachmann 25 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

Polycube Maps

§  Use many cube maps instead of an individual cube ⟶ polycube map

§  Adapted to geometry and topology

G. Zachmann 26 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

Examples

G. Zachmann 27 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

Environment Mapping

§  With very reflective objects, one would like
to see the surrounding environment
reflected in the object

§  Ray-tracing can do this, but not the
polygonal rendering by rasterization

§  The idea of environment mapping:

§  "Photograph" the environment in a texture

§  Save this in a so-called environment map

§  Use the reflection vector (from the ray) as an
index in the texture

§  A.k.a. reflection mapping

G. Zachmann 28 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

§  For every spatial direction, the
environment map saves the color of
the light that reaches a specific point

§  Only correct for one position

§  No longer correct if the environment
changes

Environment Map

G. Zachmann 29 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

Historical Examples of Applications

Lance Williams, Siggraph 1985 Flight of the Navigator in 1986;
first feature film to use the technique

G. Zachmann 30 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

Terminator 2: Judgment Day - 1991
most visible appearance — Industrial Light + Magic

G. Zachmann 31 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

Environment Mapping Steps

§  Generate or load a 2D texture that depicts the environment

§  During rasterization, for every pixel of the reflected object…
1. Calculate the normal n

2. Calculate a reflection vector r from n and the view vector v

3. Calculate texture coordinates (u,v) from r

4. Color the pixel with the texture value

§  The problem: how does one parameterize the space of the reflection
vectors?
§  I.e.: how does one map spatial directions (= 3D vectors) onto [0,1]x[0,1]?

§  Desired characteristics:
§  Uniform sampling (number of texels per solid angle should be "as constant as

possible" in all directions)

§  View-independent ⟶ only one texture for all camera positions

§  Hardware support (texture coordinates should be easy to generate)

G. Zachmann 32 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

Spherical Environment Mapping

§  Generating the environment map (= texture):

§  Photography of a reflective sphere; or

§  Ray-tracing of the scene with all primary rays
being reflected at a perfectly reflective sphere

G. Zachmann 33 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

§  Mapping of the directional vector r
onto (u,v):

§  The sphere map contains
(theoretically) a color value for every
direction, except r = (0, 0, -1)

§ Mapping:

y

z

v

r r

y

z
r

�
u
v

⇥
=

1

2

⇤

⌥⇧

rx�
r2
x +r2

y +(rz+1)2
+ 1

ry�
r2
x +r2

y +(rz+1)2
+ 1

⌅

�⌃

G. Zachmann 34 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

§  Application of the sphere mapping to texturing:

Texture Plane

Reflected View Vector
(can be calculated automatically by OpenGL)

View Vector

G. Zachmann 35 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

Simple Example

G. Zachmann 36 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

§  Unfortunately, the mapping/sampling is not very uniform:

y

z
r

a

G. Zachmann 37 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

§  Texture coords are interpolated
incorrectly:
§  Texture coords are interpolated linearly (by

the rasterizer), but the sphere map is non-
linear

§  Long polygons can cause serious "bends" in
the texture

§  Sometimes, incorrect wrap-arounds occur
with interpolated texture coords

§  Sparkles / speckles if the reflecting vector
comes close to the edge of the texture
(through aliasing and "wrap-around")

Intended/
correct

wrap
through

the sphere
perimenter

2D texturing
hardware

doesn't know
about sphere
maps, it just

linearly
interpolates

texture coords

G. Zachmann 38 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

§  Other cons:
§  Textures are difficult to generate by program (other than ray-tracing)
§  Viewpoint dependent: the center of the spherical texture map represents the

vector that goes directly back to the viewer!
-  Can be made view independent with some OpenGL extensions

§  Pros:
§  Easy to generate texture coordinates
§  Supported in OpenGL

G. Zachmann 39 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

A Piece of Artwork

Reflective balls in the main street of Adelaide, Australia

G. Zachmann 40 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

Dual Parabolic Environment Mapping

§  Idea:

§ Map the environment onto two textures
via a reflective double paraboloid

§  Pros:

-  Relatively uniform sampling

-  View independent

-  Relatively simple computation of texture
coordinates

-  Also works in OpenGL

-  Also works in a single rendering pass (just
needs multi-texturing)

§  Cons:

-  Produces artifacts when interpolating
across the edge

G. Zachmann 41 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

§  Images of the environment (= directional vectors) are still discs (as with
the sphere map)

§  Comparison:

Parabolic environment map

Result

G. Zachmann 42 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

Cubic Environment Mapping

§  As before with the "normal" cube
maps

§  Only difference: use the reflected
vector r for the calculation of the
texture coordinates

§  This reflected vector can be
automatically calculated by
OpenGL for each vertex
(GL_REFLECTION_MAP)

G. Zachmann 43 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

Demo with Static Environment

G. Zachmann 44 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

Cube Maps as LUT for Directional Functions

§  Further application: one can also use a cube map to store any function of
direction! (as a precomputed lookup table)

§  Example: normalization of a vector

§  Every cube map texel (s,t,r) stores this vector

in its RGB channels

§  Now one can specify any texture coordinates using
glTexCoord3f()and receives the normalized vector

§  Warning: when using this technique,
one should turn off filtering

(s, t, r)

�(s, t, r)�

G. Zachmann 45 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

Dynamic Environment Maps

§  Until now: environment map was invalid as soon as something in the
environmental scene had changed!

§  Idea:

§  Render the scene from the "midpoint" outward (typically 6x for cube map)

§  Transfer framebuffer to texture (using the appropriate mapping)

§  Render the scene again from the viewpoint outward, this time with
environment mapping

Ø Multi-pass rendering

§  Typically used with cube env maps

G. Zachmann 46 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

Dynamic Environment Mapping in OpenGL
Using Cube Maps

GLuint cm_size = 512; // texture resolution of each face
GLfloat cm_dir[6][3]; // direction vectors
float dir[6][3] = {
 1.0, 0.0, 0.0, // right
 -1.0, 0.0, 0.0, // left
 0.0, 0.0, -1.0, // bottom
 0.0, 0.0, 1.0, // top
 0.0, 1.0, 0.0, // back
 0.0, -1.0, 0.0 // front
};
GLfloat cm_up[6][3] = // up vectors
{ 0.0, -1.0, 0.0, // +x
 0.0, -1.0, 0.0, // -x
 0.0, -1.0, 0.0, // +y
 0.0, -1.0, 0.0, // -y
 0.0, 0.0, 1.0, // +z
 0.0, 0.0, -1.0 // -z
};
GLfloat cm_center[3]; // viewpoint / center of gravity
GLenum cm_face[6] = {
 GL_TEXTURE_CUBE_MAP_POSITIVE_X,
 GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
 GL_TEXTURE_CUBE_MAP_NEGATIVE_Z,
 GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
 GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
 GL_TEXTURE_CUBE_MAP_NEGATIVE_Y
};
// define cube map's center cm_center[] = center of object
// (in which scene has to be reflected)
...	

G. Zachmann 47 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

// set up cube map's view directions in correct order
for (uint i = 0, i < 6; i +)
 for (uint j = 0, j < 3; j +)
 cm_dir[i][j] = cm_center[j] + dir[i][j];

// render the 6 perspective views (first 6 render passes)
for (unsigned int i = 0; i < 6; i ++)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glViewport(0, 0, cm_size, cm_size);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(90.0, 1.0, 0.1, ...);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt(cm_center[0], cm_center[1], cm_center[2],

 cm_dir[i][0], cm_dir[i][1], cm_dir[i][2],
 cm_up[i][0], cm_up[i][1], cm_up[i][2]);
 // render scene to be reflected
 ...
 // read-back into corresponding texture map
 glCopyTexImage2D(cm_face[i], 0, GL_RGB, 0, 0, cm_size, cm_size, 0);

}

G. Zachmann 48 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

// cube map texture parameters init
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP);
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP);
glTexGeni(GL_R, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP);

// enable texture mapping and automatic texture coordinate generation
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);
glEnable(GL_TEXTURE_CUBE_MAP);

// render object in 7th pass (in which scene has to be reflected)
...

// disable texture mapping and automatic texture coordinate generation
glDisable(GL_TEXTURE_CUBE_MAP);
glDisable(GL_TEXTURE_GEN_S);
glDisable(GL_TEXTURE_GEN_T);
glDisable(GL_TEXTURE_GEN_R);

Berechnet den
Reflection Vector
in Eye-Koord.

G. Zachmann 49 Advanced Texturing Advanced Computer Graphics 2 July 2014 SS

For Further Reading

§  On the class’s homepage:

§  "OpenGL Cube Map Texturing" (Nvidia, 1999)

-  With example code

-  Here several details are explained (e.g. the orientation)

§  "Lighting and Shading Techniques for Interactive Applications" (Tom
McReynolds & David Blythe, Siggraph 1999);

§  SIGGRAPH '99 Course: "Advanced Graphics Programming Techniques Using
OpenGL" (ist Teil des o.g. Dokumentes)

